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Abstract. In this work in progress, we re-examine cache attacks that
leverage the x86 clflush instruction — namely Flush+Reload and
Flush+Flush — on modern hardware. In particular, we look at multi-
socket systems in which cross-socket cache coherence between different
sockets affects the attacks’ accuracy and performance.
Our preliminary results show that on dual-socket systems, Flush+Reload
exhibits complex timing patterns that usually render single-threshold
approaches ineffective to classify cache hits and misses.On such systems,
the reload step of Flush+Reload may even be slower for a cache hit than
a miss. We pinpoint Non-Uniform Memory Access as the main source of
this complexity, which both Flush+Reload and Flush+Flush thus need to
account for. Properly accounting for this can lead to a more than tenfold
reduction in error rate (e.g., on dual-socket Ice Lake SP, from a 26.0% to
a 1.55% average error rate). We also show the Flush+Flush attack works
on AMD CPUs, in single-socket and multi-socket systems alike.

Keywords: Cache Side Channel · NUMA · Microarchitectural attack.

1 Introduction

In the field of microarchitecture security, cache attacks are both amongst the
oldest primitives [15,13] and the most used ones. For instance, most transient
execution attacks rely on a cache channel to exfiltrate data from the transient
domain into the permanent domain [17]. These primitives are also an important
part of the toolbox to reverse engineer microarchitecture. On the x86 instruction
set, the clflush instruction is available in user mode, obviating the need for
eviction sets as long as the underlying target memory is shared between attacker
and victim. This leads to the Flush+Reload [19] attack primitive, which is
commonly used in x86 security research. Additionally, it has been noticed [8] that
on Intel CPUs, clflush execution time depends on the state of the cache line to
be flushed, leading to the Flush+Flush attack. This attack was deemed restricted
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(a) Histogram of reload execution time (in rdtsc unit)
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(b) Histogram of clflush execution time (in rdtsc unit)

Fig. 1: Histograms on troll, a 2×Intel Xeon Gold 5218 system (Cascade Lake
X). Hits are in blue, filled; misses are in thick outline red.

in applicability, as it had only ever been demonstrated on Intel CPUs, but never
on AMD ones [6]. Didier et al. [5] refined this later attack with a topology-aware
calibration.They also noted an unexpected bimodal distribution of execution
time on dual-socket Intel systems, but didn’t investigate further.

We thus investigate the unusual behavior of such cache attacks on multi-
socket systems, and more broadly review their behavior on newer Intel and AMD
systems. Our goal is to determine the sources of variability in Flush+Flush and
Flush+Reload attacks on multi-socket systems, and the performance achievable
under various attacker models. Our main hypothesis is that accounting for these
sources of variability greatly improves attack accuracies. We also hypothesize
that Non-Uniform Memory Access (Numa) is the dominant source of variability,
which our preliminary data supports. Under that hypothesis, these results can
then improve the quality of data collected for further microarchitecture reverse-
engineering works. These insights can also help better understand the behavior
of Numa caches regarding cache attacks, benefiting defensive research.

Our empirical study finds that Numa-aware attacks are feasible in userland,
and our Numa-aware Flush+Flush often shows a 10× improvement over a
topology-unaware Flush+Reload. On a dual socket Ice Lake SP (montcalm), the
naïve implementation of Flush+Reload and Flush+Flush exhibit average error
rates of 26.0% and 25.0%, respectively. In contrast, the Numa-aware Flush+
Reload achieves a reduced error rate of 4.86%, while the Numa-aware Flush+
Flush further improves accuracy, with an error rate of 1.55%. Similarly, on a dual-
socket AMD Zen 4 (Genoa) system (musa), the naïve Flush+Reload and Flush+
Flush exhibit respective average error rates of 23% and 16.7%. The Numa-aware
Flush+Reload then achieves a reduced error rate of 15%, while the Numa-aware
Flush+Flush further improves accuracy, with an error rate under 1%.

We can already report the following findings on multi-socket systems:

1. Numa is a major contributor to load and clflush execution timing.
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2. Numa-awareness is key for accurate Flush+Reload and Flush+Flush attacks.
3. Flush+Flush is a viable attack on most modern x86 systems, both single-

and multi-socket, and often more accurate than Flush+Reload.

The remainder of the paper is organized as follows: In Section 2, we review
related work, then Section 3 shows how Numa is the dominant contributor to
the variability of cache-attack primitives on multi-socket systems. In Section 4,
we present an extensive study of the accuracy of Flush+Reload and Flush+Flush
on a wide array of machines, comparing topology unaware and Numa-aware
attacker models. We then describe our future plans (Section 5), for the full paper
and later work. Lastly, we summarize our findings in Section 6. Our extensive
results, on 32 machines, are available online, as described by Appendix 6.

2 Background and related work

Non-Uniform Memory Access: In modern computer systems, the physical distance
between the processor and memory has become a critical factor. Longer signal
paths greatly increase memory access latency and can significantly impede system
performance. This issue is further exacerbated in architectures where multiple
processors share the same signal path, leading to potential throughput bottlenecks
that constrain overall efficiency. In particular, in multi-socket systems, having a
single, unified memory can even create contention on the interconnect within an
individual socket. To address this, hardware vendors introduced Non-Uniform
Memory Access or Numa, i.e., different parts of a processor memory (or Numa
nodes) have different performance characteristics depending on the core accessing
them. The most common approach on multi-socket computers is to attach parts
of the memory directly to a specific socket. Numa requires the Operating System
(OS) to be aware of the separation of memory to optimize the speed of loads.
Unix systems offer the numactl interface to let a user define the affinity of a
program regarding Numa memory. In these systems, the physical memory and
cores in the system are partitioned into Numa nodes: Each node contains a
memory controller, its associated physical memory, and the cores closest to this
controller. For instance, pinning the memory used by a process to a given Numa
node and its threads to cores within that node thus minimizes memory latency.

Cache Timing Attacks: CPU caches are small, fast memories, used to retain
highly used data or instructions. This microarchitectural optimization is amongst
the most targeted by attacks, and many primitives are known. Such primitives
usually exploit the timing difference between a cache hit, i.e., accessing a value
in the cache, and a cache miss, i.e., accessing a value not in the cache. In this
work, we focus on two primitives: Flush+Reload and Flush+Flush. Both use
the unprivileged clflush x86 instruction to evict a target cache line, which gets
cached again after a victim access. They then measure an execution time to
determine whether the target is cached, repeating these two steps as needed.
These attacks require read-only physical memory sharing, a constraint that can
be met for target addresses in shared library code and read-only sections[19,9,8],
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in cross-VM settings due to page deduplication [1], and in transient execution
attacks within the same process or against the kernel [3,17].

Flush+Reload [19] uses a load instruction, and then flushes the line again.
Flush+Flush [8] leverages the fact that the execution time of clflush itself

depends on the line state to remove the load. Although the timing difference is
smaller—often just a few CPU cycles—making Flush+Flush more susceptible to
noise, it improves stealth and speed by avoiding time-consuming cache misses.

Numa-based side channels: To the best of our knowledge, few works have studied
Numa from a side-channel perspective. Yao et al. [18] exploited the cache access
timing differences caused by Numa on a multi-socket system to build covert
channels, i.e., a stealthy exchange of information across isolation boundaries.
The information is transmitted by distinguishing local hits—i.e., data accessed
from the same Numa node, from remote hits—i.e., data accessed from another
node. PCIe bus contention between different Numa nodes was leveraged by
Tian et al. [16] to determine FPGA co-locality on cloud FPGA infrastructure.

Other cross-core related works: The Last-Level Cache (LLC) of Intel CPUs is
split into slices, each located next to a distinct core, and physical addresses are
hashed to determine the slice they belong in [12]. Didier and Maurice [5] studied
the impact of this slicing on Flush+Flush on client Intel CPUs. In particular, by
accounting for the interconnect topology of these CPUs, they reduce the error rate
of a standard Flush+Flush from 20% to a negligible amount, while also tripling
its bandwidth. Pacagnella et al. [14] leveraged ring-interconnect contention to
build cross-core primitives for covert-channel and side-channel attacks. Similarly,
Dai et al. [4] exploited the mesh interconnect introduced in Skylake SP server
CPUs to mount side-channel attacks. Dutta et al. [7] focused on multi-GPU
systems, mounting a Prime+Probe attack on remote GPUs, for fingerprinting
and hyperparameter extraction. Li et al. [10] proposed a new attack primitive
across independent LLCs in AMD’s CoreComplex (CCX) server CPUs.

3 NUMA contribution to timing in dual-socket systems

Figure 2a is a histogram of load execution time on a dual-socket system, and
exhibits a strange behavior, as first reported by Didier and Maurice [5]: in some
cases, a hit may be slower than a miss. Thus, a single threshold would here be
insufficient to distinguish hits from misses. To investigate it, we first used an
older, better understood, dual-socket Haswell EP machine, with 8 cores6 and a
single Numa node per socket. However, it first seemed that the slices associated
with virtual addresses were changing during execution. This suggested the kernel
was changing the underlying physical addresses, which was eventually explained
by kernel Numa re-balancing as our threads migrated across sockets.

Using numactl to properly pin memory on each node, we measured hit and
miss load execution times for each possible combination of the attacker core (A),
6 This CPU uses the same linear hash functions [12,5] as other 8-core Intel systems.
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(a) Topology unaware combination of all core pairs and memory Numa nodes
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(b) Distinguishing the Numa nodes of the attacker A, victim V and target memory M .

Fig. 2: Hit (blue) and miss (red) reload time histograms on parasilo, cf. Table 1.

victim core (V ), and memory Numa node (M). In Figure 2, we plot both the
histograms for individual (A, V,M) combinations, and the combined histogram.
It confirms that Numa is the major factor in the observed variability. Because
Numa relates to memory access latency, its large impact on the execution time of
memory instruction is quite consistent. Figure 2b shows that the memory Numa
node has no impact on reload-hit timings, as expected for a cache hit. Meanwhile,
it is a major source of variability for misses: for the same A and V , a reload is
much slower if A and M differ, which must thus be accounted for. Furthermore,
Figure 2a proves that ignoring Numa hampers the distinction of hits and misses.

Lastly, this figure underlines the symmetry of the system: what matters is
the relative location of the node of each element. For instance, the configurations
A = 0, V = 1,M = 1 and A = 1, V = 0,M = 0 raise similar histograms. This
symmetry was used by Lucas [11] to further study the behavior of clflush and
the topology of Intel server CPUs from Sandy Bridge to Haswell.

4 Extensive study on modern systems, NUMA awareness

4.1 Experiment

Given those insights, we undertook a broader study of Flush+Reload and Flush+
Flush, on a wide range of microarchitectures of mostly dual-socket x86 systems.

We adapt to Numa the calibration algorithm from Didier and Maurice [5]:
For each combination of a Numa node, to which our memory is pinned, a pair
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Table 1: Subset of the machines used as an illustration of the work
Name Processors µ-arch N C/T OS

dahu 2× Intel Xeon Gold 6130 Skylake SP 2 2× 16/32 Deb. 11
esterel41 2× Intel Xeon Gold 6426Y Sapphire Rapids 2 2× 16/32 Deb. 11
grue 2× AMD EPYC 7351 Zen 1 (Naples) 8 2× 16/32 Deb. 11
montcalm 2× Intel Xeon Silver 4314 Ice Lake SP 2 2× 16/32 Deb. 11
musa 2× AMD EPYC 9254 Zen 4 (Genoa) 2 2× 24/48 Deb. 11
parasilo 2× Intel Xeon E5-2630 v3 Haswell EP 2 2× 8/16 Deb. 11
troll 2× Intel Xeon Gold 5218 Cascade Lake SP 2 2× 16/32 Deb. 11
yeti 4× Intel Xeon Gold 6130 Skylake SP 4 4× 16/32 Deb. 11

ARL Intel Core Ultra 7 265K Arrow Lake 1 8/8P+12/12E Ub. 24.10
EMR Intel Xeon Silver 4514Y Emerald Rapids 1 16/32 Ub. 24.10
Zen2 AMD Ryzen 7 3700X Zen 2 (Matisse) 1 8/16 Ub. 20.04
Zen4 AMD Ryzen 5 7600X Zen 4 (Raphael) 1 6/12 Ub. 22.04
Zen5 AMD Ryzen 7 9700X Zen 5 (Granite Ridge) 1 8/16 Ub. 24.10
ZenP AMD Ryzen 5 2600 Zen+ (Pinnacle Ridge) 1 6/12 Ub. 18.04

of threads (attacker and victim), and a cache line within a 4KiB page, we take
1024 measurements (after 128 warm-up iterations) of each operation.

Starting with the line in a known state, usually flushed, an operation consists
of a victim execution, acting on the cache-line state, followed by the attacker
execution, which measures the execution time of a load or clflush instruction,
and resets the state. Fences and mutual exclusion are used to avoid races and
ensure correct ordering. We then build a histogram of the execution times for
each combination of the (A, V,M) parameters (respectively, the Numa node of
the Attacker, Victim and target Memory). For better reproducibility, we report
the results obtained at a fixed frequency and with prefetchers disabled.

Hence, the experiment run-time and uncompressed result files both scale
linearly in the number of Numa nodes, and quadratically in the number of cores7.

4.2 Preliminary analysis and results

Having exhaustively sampled the variability space, we can combine all the 1024-
point histograms into a single, topology-unaware histogram. We also combine
those into a small set of histograms for a Numa-aware attack. In such a setup,
the Numa node for the attacker and victim core are known and the victim
memory is also pinned to a node. We thus have the same three parameters: A the
7 We iterate on pairs of cores. As a concrete example, the results for yeti, with 128

threads, took over 24h to obtain, and occupy over 80GiB in memory.
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Table 2: Error rate predictions (in %) on single-socket machines from Table 1.
ST: Single Threshold, DT: Dual-Threshold.

Machine
Flush+Reload Flush+Flush

ST DT ST DT
ARL 2.45 2.45 0.02 0.01

EMR 39.32 33.85 0.04 0.04

Zen2 26.56 26.56 20.78 20.79

Zen4 < 0.01 < 0.01 10.11 10.11

Zen5 3.05 3.05 16.24 16.24

ZenP 28.82 25.87 9.27 9.27

attacker’s node, V the victim’s node, and M , the memory’s node. Usually, the
cores of a single socket form a Numa node8. Precisely, this model corresponds
with knowing the Numa node of the attacker thread, the victim thread and the
memory targeted, but we will shorten this to Numa-aware, as we have not yet
considered other models (such as one where the kernel remains free to migrate
the memory used across Numa nodes). We plan to include more models in our
full paper. If the attacker is able to choose, and not just know, the three Numa
nodes, the resulting error rates are the minimum rate from our experiments.

From the pair of the cache hit and miss histograms of a given attack, we
compute a threshold minimizing the average error rate (i.e., minimizing the sum
of false hits and false misses). In cases where the distributions exhibit several
peaks, we also consider an approach with two thresholds. In this case, we interpret
an execution time between the two thresholds as one outcome (e.g., a hit), and
a time outside the interval as the other outcome (respectively a miss). This
approach is suggested by the bimodal distribution observed in Figure 1b, for
instance. We applied this method to the topology-unaware attackers.

For topology-unaware setups we get a single threshold or a single pair of
threshold, while for Numa-aware ones, we get N3

Numa thresholds. We can then
break up the accuracy of the attacks on each Numa-aware configuration and
compute statistics: The minimum, maximum, average, and median error rates
observed, along with the quartiles. We present the result on a small subset of
multi-socket machines as box plots in Figure 3. We also present results for single
socket machines in Table 2, evaluating both attacks across multiple generations
of AMD CPUs. We remarked that AMD CPUs seem to have a coarser rdtsc,
which degrades attack accuracy, with a greater impact on Flush+Flush.

Thus, we observe that Numa-awareness strongly improves the attack accuracy
and usually reduces the worst-case error rate significantly. Notably, under a
topology-unaware model, an unlucky selection of Numa nodes by the kernel for
threads and memory can push error rates above 50%. For instance, this is the

8 The one exception is the Zen 1 (Naples) system with 4 Numa nodes per socket
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Fig. 3: Box plot of the error rates for attacks on the multi-socket machines in
Table 1, with a logarithmic scale (lower is better).
The Naïve, topology-unaware, methods use the same single-threshold (-S) or pair of
thresholds (-D) for all (A, V,M) node combinations, while the Numa-aware methods use
a threshold for each (A, V,M) node combination. Note that not all scales are identical.

case for esterel41 (2× Sapphire Rapids): The median error rate is 50.0% for
the topology-unaware single-threshold Flush+Reload, the worst case 63.9%, the
best case 6.8%, and three-quarters of configurations are above 25% However, the
Numa-aware Flush+Flush attack has a worst case of 14%, an average and median
error rates of 4%, and a quarter of the configurations have error rates under 0.3%.
Overall, Numa-aware attacks greatly outperform topology unaware-attacks.

4.3 Impact of prefetchers and dynamic frequency and scaling

While disabling prefetchers and dynamic frequency scaling improves reproducibil-
ity of research, attackers usually cannot disable these, as it requires elevated
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privileges. Hence, we ran our experiments twice, once in the reproducible condi-
tion above, and once in the more realistic conditions. Comparing the results, the
overall findings are consistent, with mostly slight increase in noise levels, except
on some AMD machines. We include those results in the online appendix.

5 Further work

5.1 Planned work for the full paper

Our preliminary results only account for the Numa nodes of the attacker, victim,
and target memory. However, the impact of the exact location of both attacker
and victim at the core granularity, and of their co-location has yet to be explored.
We intend to further analyze our already-collected data to evaluate the impact
of those parameters and the potential accuracy under additional attacker models.
Previous single-socket work [5] has shown the impact of the slices and the core
locations on the results of Flush+Flush. By combining our Numa calibration
with this in-socket topology-aware approach, we hope to further lower error rates.

In addition, we will extend our framework to include several attacker models.
For instance, we want to study the case where an attacker is aware of the Numa
architecture but is unable to pin processes to a specific node. This would illustrate
a scenario where numactl is unavailable, or an attacker-aware Numa scheduler.

Lastly, the performance evaluation of side-channel primitives is a complex
matter. While the error rate is a significant performance indicator, it does not
totally reflect a primitive’s performance. We will address this in the full paper
by accounting for the attack speed in addition to its accuracy. To do so, we will
thus integrate our improved calibration and the various attacker models into an
end-to-end performance benchmark, and run it extensively on the same machines.

5.2 Lead for other work

This work focuses heavily on x86-based server-grade microarchitectures. Porting
topology-aware methods to different architectures, which may not provide an
unprivileged equivalent to clflush could provide similar gains to attacks on those
platforms. On such platforms, the equivalent attack would be Evict+Reload,
which relies on eviction sets instead, and would thus be the most attractive target.
On the other hand, Prime+Probe attacks seem rather unlikely to be suitable
for use in systems that do not share a single last-level cache, but verifying this
assumption would be a simple extension on top of Evict+Reload. Lastly, the
behavior of rdtsc on AMD machines seems to warrant further investigation.

6 Conclusion

We have carefully calibrated Flush+Flush and Flush+Reload attacks on recent,
multi-socket and single-socket, Intel and AMD machines. We showed that cache
attacks in multi-socket systems have to cope with major variability caused by
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Non-Uniform Memory Access (Numa). This variability can significantly degrade
the accuracy depending on the respective location of the attacker, victim and the
target memory. Usually, the most unfavorable case is an attack in which both
the target memory and the victim belong to a different node than the attacker.

In general, we show that attacks that do not account for these variables will
not work reliably, with the kernel Numa re-balancing causing major interference.

On the other hand, we show that Flush+Flush can be a viable attack in many
situations, including on AMD CPUs, whose vulnerability had not been identified
before. Often Flush+Flush is even better than Flush+Reload, especially in the
aforementioned remote victim and memory configuration. On average, topology
awareness can reduce the error rate by at least an order of magnitude, e.g.,
on kinovis, a dual-socket Sapphire Rapids machine, naïve Flush+Reload and
Flush+Flush alike have a 50% average error rate, while a Numa-aware Flush+
Flush only suffers from a 4.9% average error rate.

Overall, we conclude that topology awareness is essential on modern multi-
socket systems. In our full paper, we intend to also account for the variability
at both core granularity and cache-slicing granularity. We will also diversify the
attacker models to cover more scenarios, and identify the minimal prerequisite
an attacker needs to run a successful attack.
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