N

N

Flush-based Cache Attacks on Modern / Multi-Socket
x86 Systems

Guillaume Didier, Thomas Rokicki, Augustin Lucas

» To cite this version:

Guillaume Didier, Thomas Rokicki, Augustin Lucas. Flush-based Cache Attacks on Modern / Multi-
Socket x86 Systems. 2025. hal-05424273

HAL Id: hal-05424273
https://hal.science/hal-05424273v1

Preprint submitted on 18 Dec 2025

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-05424273v1
https://hal.archives-ouvertes.fr

Flush-based Cache Attacks on Modern / Multi-Socket x86 Systems

Guillaume Dipier
Universitdt des Saarlandes, Germany;,

Formerly: DGA; Univ. Rennes, Inria, IRISA

Thomas Rokickr
CentraleSupélec, Inria, CNRS,
IRISA, Université de Rennes; France

Augustin Lucas
Département d’Informatique, ENS de Lyon;
Univ. Rennes, Inria, IRISA; France

Abstract

Flush-based cache attacks have been extensively studied and
leveraged, yet their behavior on today’s complex x86 plat-
forms is not fully understood. Notably, as cache and memory
latency depend on the physical layout of cores, caches, and
Numa nodes, system topology increasingly influences the
latencies underlying such attacks. We thus investigate the
impact of this growing complexity on the effectiveness of
flush-based attacks. We present a large-scale, topology-aware
study of Flush+Reload and Flush+Flush across 36 Intel and
AMD, single- and multi-socket systems, with server and client
CPUs. We show topology-induced contributions dominate
the latency variations. In particular, NumA’s contribution on
multi-socket systems makes topology-unaware attacks unreli-
able. Our topology-aware calibration accounts for topological
parameters like attacker/victim cores, memory Numa node,
and target address, improving error rates and attack viabil-
ity. We demonstrate Flush+Flush works on AMD targets,
and is often more accurate than Flush+Reload on modern
x86 platforms. Finally, we introduce Load/Flush+Reload, a
covert-channel comparing invalid to shared loads, with dou-
ble the true capacity than Flush+Reload/Flush+Flush. Our
results show that topology awareness is required for depend-
able cache attacks on recent platforms, and provide practical
guidance for attackers and defenders.

1 Introduction

Cache-based side and covert channels are among the oldest
and most widely exploited microarchitectural leakage prim-
itives [16, 17]. They remain essential to both offensive and
defensive research: most transient execution attacks rely on
such channels to transfer data from the transient to the archi-
tectural domains [20]. They are also used to reverse engineer
undocumented aspects of modern microarchitectures [6].

On x86, the ¢ 1 f 1ush instruction provides an unprivileged
way to evict cache lines from all levels of the cache hierarchy,
enabling fine-grained observation of memory access behavior

within (read-only) memory shared by the attacker and victim.
It forms the basis of the Flush+Reload attack [22], which
remains a fundamental primitive in cache-based side-channel
attacks. Gruss et al. [8] also observed that c1£1ush latency
depends on the cache line’s coherence state on Intel CPUs,
leading to the Flush+Flush attack. To our knowledge, Flush+
Flush has never been demonstrated to work on AMD CPUs [6].

Modern CPUs have grown increasingly complex: As illus-
trated in Figure 1, modern systems feature several levels of
caches, with per-core slices in the last-level cache, complex
on-chip and off-chip interconnect, and multiple Numa nodes
in multi-socket systems. Consequently, the latency of memory
accesses depends strongly on the relative placement of cores,
cache slices, and Numa nodes within the system topology,
as illustrated in Figure 2. For example, reading data from
memory (cache miss) located in a remote Numa node incurs
a higher latency (600 cycles on 2x Sapphire Rapids system)
than reading from the local node’s memory (only 400). While
this behavior is intuitive, its impact on the accuracy, reliability,
and timing characteristics of cache-based side-channel attacks
has yet to be quantified. This gap motivates our study and
leads to our main research question:

To what extent does the growing complexity of x86 sys-
tems affect the effectiveness of flush-based cache attacks?

Our study seeks to determine which topological factors
most strongly influence the variability of Flush+Flush and
Flush+Reload attacks, and how attacker awareness of these
factors improves accuracy and bandwidth. We perform a de-
tailed analysis of memory latency across all relevant topologi-
cal dimensions, including attacker and victim core placement,
cache slice, and Numa node, to quantify their respective im-
pact on timing variability and error rates. To further quantify
the gains of topology awareness, we evaluate the bandwidth
and error rates of different topological configurations in a
covert-channel setting, assessing the speed and robustness of
these primitives in practice. To ensure that our observations
generalize across platforms, we conduct a large-scale empiri-
cal study spanning 36 Intel and AMD systems, encompassing
client, server, and multi-socket architectures.

L3 L3 L3 L3
Slice || Slice || Slice || Slice

Distributed L.3

L3 L3
' Slice || Slice

L3 L3 |
Slice || Slice

Distributed L.3

L2 L2 L2 L2
[]] [] -

Core || Core || Core || Core |

DRAM

[])]]]] -

L2 L2 L2 L2

DRAM

Core || Core || Core || Core | -

NuMA Node

NUMA Node

Figure 1: Example of the topology of a multi-socket system, with non-uniform memory access (NUMA).

We find that topology awareness, in particular Numa aware-
ness, can reduce error rates of attacks by up to an order of
magnitude compared to topology-unaware methods. For in-
stance, on esterel4l, a two-socket Intel Sapphire Rapids
machine, topology-unaware Flush+Flush has an average error
rate of 27.55%, while the topology-aware average is 1.53%.
If the attacker is not merely aware, but is allowed to select the
best configuration, then the error rate drops below 0.01%.

We also present Load/Flush+Reload, a more accurate vari-
ant of Flush+Reload, which provides a higher bandwidth,
however limited to a covert-channel threat. On a single socket
Zen 5 machine, it achieves a true capacity of 4.98 Mbit/s, a
2x improvement over Flush+Flush and Flush+Reload, which
only achieve, respectively, 1.95 Mbit/s and 2.27 Mbit/s.

To summarize, we make the following contributions:

— We demonstrate that topology is a major contributor to
load and c1flush timing, with Numa being the most
significant factor in multi-socket systems.

— We show that, on modern systems, accurate Flush+Reload
and Flush+Flush attacks require topology awareness.

— We present an evaluation on 36 x86 systems, of the impact
of various parameters on cache attack performance.

— We show that Flush+Flush is widely applicable on x86
machines, including AMD and multi-socket systems, and
may be more accurate than Flush+Reload in many cases.

— We present a new covert-channel primitive, Load/Flush+
Reload, whose bandwidth can reach 2x that of Flush+
Reload and Flush+Flush, and far lower error rates.

This paper is organized as follows: Section 2 recalls rel-
evant background and prior work. Section 3 introduces the
parameters, threat model, and an overview of our experiments.
Section 4 evaluates the contribution of system topology on
clflush-based attacks. Then, Section 5 evaluates the ben-
efits of topology awareness on covert channels. Finally, we
discuss limitations, related, and future work in Section 6.

2 Background and Related Work

2.1 Modern System Memory Hierarchy
2.1.1 Cache Hierarchy and Structure

In order to hide main memory latency, modern processors
include smaller and faster memories called caches. Caches
keep copies of recently used cache blocks (or memory blocks),
made of a fixed number of bytes. Usually, x86 systems use
64-byte cache blocks. We refer to the combination of a cache
block and its associated cache metadata as a cache line. Cache
lines usually include a tag, to identify the memory address
of the block within, and extra bits, such as the line’s validity.
Most caches are accessed using the physical addresses rather
than the virtual addresses, to avoid synonym problems [10].

To better bridge the gap between memory and core speed,
modern systems generally have three levels of caches. First,
each physical core has a private level 1 instruction cache (L1I)
and a private level 1 data cache (L1D). Both of these caches
then fall back to a level 2 private cache (L2). Last, a shared
level 3 cache can fulfill requests for all cores in the chip, as
the last-level cache (LLC). However, in systems with multiple
sockets, each socket has a separate last-level cache [10]. This
can also be the case in multi-chip modules, a technology that
is used by AMD in its larger processors.

A cache is inclusive when it must contain a copy of every
line in the lower level caches [10]. This is true for LLCs of
older Intel CPUs. However, Intel introduced non-inclusive
LLCs in the Skylake-SP server micro-architecture [11].

2.1.2 Cache Coherence

As modern systems include multiple cores, and both private
and shared caches, cores may observe different values for the
same memory location, due to stale copies in private caches.
To avoid such unintuitive behavior, modern CPUs provide
cache coherence to ensure all cores agree on the sequence
of values taken by a memory location (usually at the cache
block granularity). This is done by enforcing a single-writer
or multiple-reader (SWMR) invariant [10, 14].

-107

0.5 n
0 T ﬁ T T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200
(a) Topology-unaware histogram, weighing equally all possible configurations
Location: A: 0, V: 0, M: 0 Location: A: 0, V: 1, M: 0 Location: A: 1, V: 0, M: 0 Location: A: 1, V: 1, M: 0
-10° -10° -106 -100
34 3 3 34
2 2 2 2
0 T T 0 \ T 0 T T 0 \ T
0 500 1,000 0 500 1,000 0 500 1,000 0 500 1,000
Location: A: 0, V: 0, M: 1 Location: A: 0, V: 1, M: 1 Location: A: 1, V: 0, M: 1 Location: A: 1, V: 1,M: 1
-106 -100 -10° -10°
34 34 3 34
2+ 2 4 2 4 2+
A A ' M] A 5l
0 \ T 0 1 T 0 T T 0] T
0 500 1,000 0 500 1,000 0 500 1,000 0 500 1,000

(b) Numa-aware histograms, under the Numa-AVM model.

Figure 2: Flush+Reload timing histograms on esterel41l, ¢f. Table 11 (2x Sapphire Rapids). In red, outlined, loads of an
invalid line (/) i.e., cache misses. In blue, filled, loads of a victim-exclusive line (E), i.e., cache hits.

Cache coherence is implemented using protocols, in which
each cache line has a state. Variants of the classical MESI
protocol are used by Intel (MEesir) and AMD CPUs (Mogst).
In MESI, a cache line can be in the following state:
Modified: It holds the modified copy of the cache block, and

must write it back before other cores may access it .
Exclusive: It holds the only clean copy of the block, and may
be upgraded to the Modified (M) state at no cost.
Shared: It holds one of many clean copies of the block, other
copies must be invalidated before writing.
Invalid: It contains no valid copy of any memory block.

Single-socket systems usually include a global directory to
track the state of lines in the socket, while multi-socket systems
need to implement a distributed protocol to maintain cache
coherence across all sockets. Inclusive last-level caches often
act as the directory, but modern systems increasingly have
non-inclusive last-level caches, and separate directories [21].

2.1.3 Multi-socket Systems and Numa

In modern multi-socket systems, each socket has its own
memory controllers, and associated DRAM attached. Conse-
quently, the access time to a given main memory location can
vary significantly depending on whether the request is fulfilled
by a memory controller on the same socket, or must traverse
the socket interconnect to reach the correct memory controller.

LOur attacks, as they target read-only memory, do not involve the M state.

Systems where this is a significant issue are deemed to have
Non-Uniform Memory Access, or Numa. To optimize the
performance of memory-heavy processes, the system is di-
vided into Numa-nodes. Each Numa-node contains a group
of physical cores with roughly the same memory access laten-
cies, and the closest memory controller(s), giving them the
best memory latency. For instance, pinning the memory of a
process to the memory controller of a node and running the
process’ threads on physical cores in that node may reduce the
memory latency. In other cases, maximizing the processing
bandwidth involves spreading the threads over all Numa-node,
each thread processing data from the memory of its node.

Hence, operating systems usually allow processes to make
placement requests for their threads and memory. Modern
Linux kernels can also rebalance Numa-node usage dynami-
cally, migrating physical pages, from one node to another, to
optimize the performance.

2.2 Micro-architectural Attacks

Micro-architectural attacks violate confidentiality guarantees,
meant to be provided by process isolation, by exploiting the
ISA’s micro-architectural implementation through timing or
performance counters. We typically distinguish side channels
in which an unsuspecting process leaks sensitive data through
micro-architectural state, which the attacker can measure;
from covert channels in which two attackers cooperate to
stealthily exchange information across isolation boundaries.

3. Attacker Load

2. Victim Load
1. Attacker

1. Receiver Flush 1. Attacker,
(reset) Flush

O
(slow)

3. Attacker Load

2. Victim No Load

(a) Flush+Reload

2. Victim Load

2. Victim No Load

(b) Flush+Flush

2. Receiver Load
(0, slow)

@ ___________ > Ep <——
~1. Sender Flush _, Set-up:

e Receiver
e (slow) Load
<. 3+1. Attacker Flush 0o

' (fast)
G DY
(S 4’\1 S .S
@ \& 51 ?\7 §

{
o
=

-~
Q
<

-r
@
=
o
o
o

{

(c) Load/Flush+Reload (New, cf. Section 3.1)

Figure 3: Cache coherence transition diagrams of the three primitives. Fast transitions in dotted, slow transitions dashed. The
arrow colors match the histogram. /: Invalid state. Ec: Exclusively state on core C. Sc,p: Shared state between cores C and D.

2.3 clflush-based Attacks

clflush is an x86 unprivileged instruction that evicts the
cache line given as an operand from the entire cache coherence
domain, and ensures it is written back to main memory [11].
From a cache coherence perspective, c1f1ush reliably tran-
sitions lines into the Invalid state.

This instruction enables the Flush+Reload and Flush+Flush
attacks. These two attacks require shared memory between
the attacker and victim, usually read-only. The attacker can
then observe the addresses of memory accesses by the victim,
in the shared memory, at cache-block granularity.

In Flush+Reload [22], the attacker first flushes the tar-
get cache line, and waits for the victim to, possibly, read
that line. If the victim accesses the target line, it transitions
into a Victim-Exclusive state, otherwise the line keeps its In-
valid state. The attacker then measures the execution time to
load the target line, distinguishing the two possible coherence
states. The line transitions” respectively into a Shared or an
Attacker-Exclusive state. The attacker then repeats the pro-
cess. Figure 3a presents the coherence state transition for this
attack, with the attacker and victim on distinct physical cores.

Flush+Flush [8] exploits the fact that on Intel CPUs,
clflush execution time itself depends on the state of the
target cache line. It is thus possible to avoid the Reload step
of Flush+Reload and instead time a c1flush instruction,
which both measures and resets the state. As such, the tar-
get line alternates between the Invalid state and the Victim-
Exclusive state, the latter following a memory access by the
victim. Figure 3b presents the corresponding coherence states.
Whether it works on AMD CPUs has yet to be ascertained.

2.4 Calibration of Timing Attacks

Cache-based side and covert channels rely on timing measure-
ments to infer whether data was cached. In either case, the
execution time must be mapped into one of the possible out-

2Unless attacker and victim share the same physical core

comes. The simplest way is often to classify by comparing the
measured execution time to a threshold: intuitively, a cache
hit is fast and a miss is slow. However, c1f1lush is often
faster when its operand is not in the cache.

In more complex systems, the timing distribution of cache
operations may not be cleanly separable, and classification
may benefit from using a range defined by two thresholds
rather than a single one. Selecting the optimal thresholds
requires collecting representative timing data for each out-
come and analyzing the corresponding histograms of exe-
cution times. When multiple factors influence timing, such
as which cores the attacker and victim execute on, or the
Numa node to which the target memory belongs, classifica-
tion must account for each configuration independently. This
approach, which we refer to as fopology-aware calibration, as-
signs separate classifiers or thresholds to each relevant attack
configuration to minimize misclassification rates.

3 Methodology

Our goal is to characterize the impact of the topology of the
memory hierarchy on cache attacks in modern computer sys-
tems. To do so, we aim to explore all possible combinations
of parameters that influence the latencies observed in these
attacks. One such parameter is the memory controller that
serves a cache miss in Numa systems. In a two-socket sys-
tem, a request to the other socket’s memory controller incurs
the extra cost of crossing the inter-chip interconnect’, and of
traversing two on-chip networks instead of one.

We call fopology the combination of all the sources of vari-
ability induced by the difference in paths within the memory
hierarchy. In practice, this covers the respective physical cores
on which the attacker (A) and victim (V) processes run, the
memory controller (M) to which the target memory belongs,
and the latency caused by the internal organization of caches.
For instance, on Intel CPUs, this is the cache slice to which

3UPI on modern Intel systems

the target physical memory maps. We use the virtual address
(Addr) of the target cache block as a proxy to this factor, as
the hashing functions used by the last-level caches of our ma-
chines are not generally known, and attackers usually cannot
access the physical addresses that would be needed.
Three research questions thus follow from our goal:
RQ1: Which attack is applicable on each micro-architecture?
RQ2: What is the impact of topology on attack accuracy, and
what gains can be obtained with topology awareness?
RQ3: What covert channel true capacity can be achieved us-
ing the best trade-off between accuracy and attack speed?
We define a configuration as a tuple, (A,V, M, Addr), of
the attacker and victim physical core (and socket), target mem-
ory, and virtual address. Our experiments thus iterate over
the entire set of possible configurations, and make a series of
measurements for each. To answer these questions, we run
two sets of experiments: The first one aims at measuring laten-
cies for hits and misses in each primitive, building histograms
such as Figure 2, to answer RQ1 and RQ2. The second one
aims at evaluating the performance of covert channels, in an
end-to-end setting, answering RQ3.

3.1 Attack Primitives

We consider three attack primitives: First, the classical Flush+
Reload (FR) and Flush+Flush (FF), already described previ-
ously (Section 2.3). In addition, due to a bug while imple-
menting Flush+Reload, we discovered Load/Flush+Reload
(LFR), a primitive which rearranges the elements of Flush+
Reload, resulting in a different set of cache coherence transi-
tions. While Flush+Reload compares the execution time of a
load from an Invalid state (/) to a Load from an Exclusive state
on the victim/sender core (Ey), this primitive compares the
execution time of an Invalid load (1), with that of a load from
a Shared state between the sender and the receiver (Sg,s). The
receiver only issues loads, while the sender issues either a load
(to encode a 1), or a flush, (to encode a 0). Since the receiver
has previously loaded, the sender’s action brings the cache
line into either the Invalid or the Shared state. The attacker’s
loads leave Shared states unchanged, and turn Invalid states
into a Receiver-Exclusive states. This results in a much faster
attack, makes transmitting series of ones inexpensive, and
increases the timing difference between the two transitions.

3.2 Attacker Models

We identify above several parameters that influence the la-
tencies of hits and misses in cache attack primitives. The
attacker aims to distinguish between two outcomes: hits and
misses. Hence, she wants the distribution of timings for hits
and misses to be well separated. However, if she accounts
for none of these topology parameters, the distributions get
wider and separation can get worse. The attacker thus wants
to account for as many parameters as possible to narrow the

timing distributions, and hopefully make classification eas-
ier. We consider two types of classifiers: a threshold, and a
range, respectively denoted ST and DT*. A threshold maps
values below it to one outcome, and above it to the other, while
a range maps values inside the range, i.e., between the two
thresholds, to one outcome, and those outside to the other.

In this work, we consider different attacker models, rep-
resenting the extent of knowledge and control the attacker
has over these parameters. Each parameter can be either Un-
known U @ (the same classifier is used for all possible values
of the parameter), Known (a distinct classifier is used
for each possible value), or Chosen C 8, (the attacker selects
the parameter’s value to get the best average result).

Generally, the Numa node of the target memory (M) can be
pinned to nodes using 1ibnuma, which provides an ease-of-
use interface on top of the Linux kernel system calls. These
system calls are usually available to the unprivileged user,
unless purposefully restricted using capabilities.

The address (Addr) being known means using one classifier
per cache line. A covert channel attacker may choose the Addr
used, while a side-channel attacker may usually not’.

The attacker and victim [19] core can be controlled precisely
through the kernel sched_setaffinity system call, a
more powerful interface than the attacker and victim Numa-
node selection from 1ibnuma. Additionally, the victim core
can also be found using /proc/pid, which provides the
core affinity and the last core used.

Consequently, all these parameters can be realistically con-
trolled by an attacker. We thus define the attacker models in
Table 1, respectively Table 1a for multi-socket systems and
Table 1b for single-socket ones.

3.3 Experiment 1: Calibration

This first experiment collects latency data for the hits and
misses of each primitive. This experiment iterates over the
space of (A,V, M, Addr) configurations. We successively
pin our process’s memory to each Numa-node M, and it-
erate over all (A, V) pairs of cores, and over all cache lines
within a 4 KiB page. This is achieved by using 1 ibnuma and
sched_setaffinity. For each of those configurations,
we then take measurements for a set of operations, consist-
ing of a victim execution to set up the cache state followed
by the attacker execution of the primitive. We have three
primitives, with two outcomes each, so we would expect six
different operations. However, the miss in both Flush+Reload
and Load/Flush+Reload is a load to an invalid cache line.
Consequently, we thus only need five operations, described
in Table 2, with the line Load I being used by two different
primitives. For each operation, we take 1024 measurements

4For Single Threshold and Dual Threshold.
31t has not been explored if repeated Numa migrations can allow the
attacker to select a more suitable address.

Table 1: Attacker Models in this paper.

(a) Multi-socket

(b) Single-socket

Memory Attacker (A) Victim (V) Model Addr AV

Model Numa Address Numa Core Numa Core Topology-Unaware (TU) U@uUOUO

node (M) (Addr) node node Addr 88 > }oK 2}
Topology-Unaware (TU) U@ U0 UO UO U Ue Core-AV 18F
Numa-AVM U@ ve uvo Core-AV-Best v@clc
Numa-M-Core-AV U

uma-M-Core o Core-AV-Addr (TA)

Numa-M-Core-AV-Best C U@ cEM cBcmc

Numa-M-Core-AV-Addr (TA)
Numa-M-Core-AV-Addr-Best (Best-TA) C C

cMc@d cm ce

Core-AV-Addr-Best (Best-TA) CE4 CH4 C

More attacker models are considered in the

online appendix (cf. Appendix C).

In single-socket systems (Table 1b), the Numa columns vanish, making some models from Table 1a equivalent.

Table 2: Operations used in the Calibration experiment

Operation Used by Victim Attacker Attacker
Primitive action times reset
Load 1 F+R & LF+R (miss) — Load clflush
Load Ey F+R (hit) Load Load clflush
Load Sa.v LF+R (hit) Load Load —
clflushl/ F+F (miss) — clflush —
clflush Ey F+F (hit) Load clflush —

after 128 warm-up iterations, whose timing measurement is
discarded, before moving on to the next operation.

This results in a large set of histograms, associating 1024-
sample histograms of the latencies of each operation with
each configuration. Combining the respective hit and miss
operations thus gives us histograms for each primitive which
can be used to estimate the error rate of classifiers, and identify
the best one. Following the attacker model, we select and stack
together histograms that will use the same classifier, and obtain
the average (Avg.) error on these. We also compute several
statistics on the underlying series of histograms: minimum
(Min.), maximum (Max.), median (Med.), and quartiles (Q1
and Q3) of the observed error rates.

These predictions give an optimistic estimation of the error
observed in a real attack: Our measurements, executed with no
other activity on the system can benefit with the DRAM row
remaining open, which speeds up the cache misses. In a real
attack, this might not be the case, and the branch predictor state
could also vary and induce more variability than here. This
limitation motivates the second experiment, which evaluates
the resulting classifiers in an end-to-end attack.

3.4 Experiment 2: Covert Channel Benchmark

To answer RQ3, this second experiment aims to evaluate end-
to-end attacks, and measure the bandwidth of covert channels
built with each attack primitive. This gives a more realistic

representation of the error rates that can be achieved. We
transmit 1024 bits between two threads, over a channel using
n cache lines in separate pages, in a round-robin fashion. This
transmission is repeated 16 times for each configuration, to
obtain an average and a standard deviation. We explored
values of n between 1 and 10 and found that 3 cache lines
offered the best tradeoff between bandwidth and accuracy.

We use a generic implementation, parametrized with the
primitives. It uses the algorithm from the first experiment
to self-calibrate and select the classifier used. Because of
that in-situ calibration, it requires a longer runtime than the
first calibration experiment. Due to the longer runtime, we
cover a smaller set of attacker models, with the following
shorthands: TU (Topology-Unaware), TA (Topology-Aware)
Best-TA (Best Topology-Aware), see Table 1. One notable
caveat is that the Best-TA model selects its configuration to
minimize the error rate. This can then result in choosing a
configuration causing a decrease in attack speed.

To speed up the experiment, we use the symmetries of the
system to reduce the number of configuration to be explored,
pinning memory to a single Numa-node and deduplicating
equivalent hyper-threads. We verify, in Section 4.4 the under-
lying assumptions.

From the raw bandwidth (C) and error rate (p), we then
derive the true capacity 7', using the following formula [15]:

T=Cx(1+(-p)lg(1-p)+plg(p))

We thus present the error rate, raw bandwidth, and true capac-
ity in Section 5, answering RQ3.

3.5 Experimental Setup

We run our experiments on 36 machines, described in Ap-
pendix B. The multi-socket machines use Debian 11, while
the single-socket machines use a mix of Ubuntu releases.

In order to get reproducible results, we make a series of
measurements with dynamic voltage and frequency scaling

(DVES) and prefetchers disabled. We also took a second
series of measurements with those features enabled in their
default configuration. We include the corresponding data in
our online supplement, cf. Appendix C.

In both experiments, fences and mutual exclusion prevent
race conditions and enforce the correct ordering of operations.

In this section, we have thus described, our three research
questions, RQ1, RQ2, and RQ3, and described the two exper-
iments we use to answer them. Section 4 thus answers RQ1
and RQ2, while Section 5 answers RQ3.

4 Results for Experiment 1: Calibration

In this section, we aim to answer RQ1: “Which attack is appli-
cable on each micro-architectures?” and RQ2: “What is the
impact of topology in attack accuracy, and what gains can be
obtained with topology awareness?” To do so, we measured
the latency distributions of hits and misses for each primitive
(Section 3.1) under each (A, V, M, Addr) configuration, and
used them to build the histograms under each attacker model
(Table 1). Table 12, in Appendix D includes a summary of
the average predicted error rates for all 36 machines under the
topology unaware (TU), the Numa-M-Core-AV-Addr (TA),
and the Numa-M-Core-AV-Addr-Best (Best-TA) models. We
successively discuss the results of single-socket client and
server Intel CPUs, single-socket AMD CPUs, before mov-
ing to multi-socket systems. After verifying the symmetry
assumptions needed for Experiment 2, we discuss results on
two-socket Intel servers, two-socket AMD servers, and finish
with the four-socket Intel server in our data set.

As a general note, most of the Load/Flush+Reload his-
tograms tend to have a very narrow and very high peak for
hits. To allow reading the wider, much less tall miss distribu-
tion, we usually truncate the peak for hits.

Concerning single-socket systems, NUMA is not a concern.
In addition, Didier and Maurice [5] demonstrated the benefits
of topology awareness for Flush+Flush on Coffee Lake-R®
client CPUs. We thus focused on checking the most recent
Intel micro-architectures, Arrow Lake and Emerald Rapids,
while looking at more AMD micro-architectures, which had
no prior coverage for Flush+Flush. Table 12, in Appendix D
presents the error rate predictions for all 36 tested machines.

To illustrate the behavior, we discuss the results for the most
recent systems in each category: Intel single-socket client,
Intel single-socket server, Intel two-socket (server only), AMD
single-socket and AMD two-socket. We also include the only
four socket machine we have.

4.1 Calibration of Intel Client CPUs

Arrow Lake (late 2024) is Intel’s latest client micro-
architecture. Under a fopology-unaware model, Flush+Flush

6Skylake 4™ refresh, with minimal changes.

-10°

1 |
] M
0 L N\’M T T T T
200

400 600 800 1,000

(a) Flush+Reload

10°
2
1.5 |
1 |
0.5 | /NMW
0 T T T T

I
0 200 400 600 800 1,000

(b) Flush+Flush
-10%

2 | Jl
O ’L T T)M\ T T
0 200 400 600 800 1,000

(c) Load/Flush+Reload

Figure 4: Flush+Reload, Flush+Flush, and Load/Flush+
Reload topology-unaware histograms, on ARL, (1X Arrow
Lake). Cache misses in red, outlined; hits in blue, filled.

and Flush+Reload histograms exhibit pretty good separa-
tion, while Load/Flush+Reload shows even greater one, as
shown in Figure 4. Hence, on ARL, topology awareness helps
marginally, only reducing the worst-case error rate. Table 3
displays the predicted error rates for a selection of attacker
models, where the additional parameters make a difference.
We conclude that all three attacks work on recent Intel
client CPUs (RQ1). On some systems, topology awareness
benefits are marginal, however, our result on Coffee Lake
(cf- Appendix C), and those of Didier and Maurice [5] indi-
cate that in some cases, Flush+Flush accuracy may degrade
significantly without topology awareness (RQ2).

4.2 Calibration of Intel Server CPUs

Emerald Rapids (2024) is Intel’s latest server micro-
architecture, and a minor evolution of Sapphire Rapids.
Figure 5 shows the topology-unaware histograms for all
three primitives. For loads, cache misses overlap with exclu-
sive hits in another core (250—400 cycles), such that topology-
unaware Flush+Reload is ineffective. Flush+Flush exhibits
good separation, and Load/Flush+Reload an even better one.
Table 4 presents a subset of the results under various at-
tacker models, where once again, the additional parameters
make a difference. Flush+Flush and Flush+Reload improve
with more detailed attacker models, but that Flush+Reload

Table 3: Error rates (%) for ARL — 1x Arrow Lake — Fixed
Frequency, No Prefetcher, Single Threshold

Model Avg. Min. QI Med. Q3 Max.
TU-FF <0.01 <0.01 <0.01 <0.01 <0.01 0.29
TU-FR 0.01 <0.01 <0.01 <0.01 <0.01 0.59
TU-LFR <0.01<0.01<0.01<0.01<0.01 0.10
Core-AV-FF <0.01 <0.01 <0.01 <0.01 <0.01 0.24
Core-AV-FR <0.01<0.01 <0.01<0.01<0.01 0.59

Core-AV-FF-Best < 0.01 < 0.01 <0.01 <0.01 <0.01 <0.01

Core-AV-FR-Best < 0.01 <0.01 <0.01 <0.01 <0.01<0.01
Core-AV-LFR-Best < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <0.01

Core-AV-Addr-FF < 0.01 < 0.01 <0.01 <0.01 <0.01 0.24
Core-AV-Addr-FR < 0.01 < 0.01 <0.01 <0.01<0.01 0.54

is still much noisier than alternatives. Figure 6 shows exam-
ples of Core-AV and Core-AV-Addr median and worst case
histograms, which demonstrate the issue.

Here Flush+Flush is more accurate than Flush+Reload, with
Load/Flush+Reload more accurate than both.

Overall, all three attacks are applicable to Intel server CPUs
in single-socket systems (RQ1). Flush+Flush sees some small
improvement with topology awareness, while Flush+Reload
sees a significant one, going from 41% to 7.8% under Core-
AV-Addr-FR. Choosing the best configuration then reduces
to a negligible error rate. Topology awareness leads to major
improvements for Flush+Reload on Intel server CPUs (RQ?2).

4.3 Calibration of AMD CPUs

We now turn to AMD systems to evaluate whether the same
trends hold. On AMD CPUs, the rdt sc instruction has a
coarser granularity. From Zen 2 onwards, the rdpru instruc-
tion gives access to the APERF MSR, incrementing with clock
cycles [7,12]. We thus use it when available.

Figure 7 shows topology-unaware histograms, using the
rdpru method for Flush+Reload and Flush+Flush, and
rdtsc one for Flush+Flush, showing the benefits of the
rdpru method. The error rates in Table 5 show that Flush+
Reload and Flush+Flush both work, but with measurable error
rates, while Load/Flush+Reload is much more reliable.

Overall, Flush+Flush works on all AMD systems, and on
some micro-architecture, such as Zen 2, Flush+Flush is more
reliable than Flush+Reload, c¢f. Appendix D. The accuracy
of either method tends to be correlated, with some micro-
architecture showing high error rates for both, or lower error
rates for both, with the difference between the two primitives
being smaller than the micro-architecture induced one.

We can thus conclude that AMD single-socket systems are
susceptible to our 3 attack primitives (RQ1). In particular,
AMD susceptibility to Flush+Flush is a new finding that goes

108
3 |
2 |
o
0 A T \ T

0 200 400 600 800
(a) Flush+Reload

106
8 |
6 |

(el NS
[

T T T
0 200 400 600 800

(b) Flush+Flush
6

4 -10

3 |

2 -

1 |

0 T \ T

0 200 400 600 800

(c) Load/Flush+Reload

Figure 5: Flush+Reload, Flush+Flush and Load/Flush+
Reload TU histograms, on EMR, (1x Emerald Rapids).

Table 4: Error rates (%) for EMR — 1x Emerald Rapids —
Fixed Frequency, No Prefetcher. When results differ, -ST and
-DT distinguish (single) thresholds and ranges.

Model Avg. Min. QI Med. Q3 Max.
TU-FF 0.05 < 0.01 <0.01 <0.01 <0.01 50.05
TU-FR-ST 41.34 9.13 25.54 38.82 50.00 100.00
TU-FR-DT 33.67 1.27 18.80 29.88 42.24 99.80
TU-LFR <0.01<0.01<0.01<0.01<0.01 244
Core-AV-FF 0.02 <0.01 <0.01 <0.01 <0.01 45.90

Core-AV-FR-DT 19.74 < 0.01 6.93 16.89 28.12 90.09
Core-AV-FF-Best <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Core-AV-FR-Best <0.01<0.01<0.01<0.01<0.01 0.05
Core-AV-LFR-S-Best < 0.01 < 0.01 <0.01 <0.01<0.01 <0.01
Core-AV-Addr-FF-ST 0.01<0.01<0.01<0.01<0.01 23.78
Core-AV-Addr-FF-DT < 0.01 <0.01<0.01 <0.01<0.01 3.12
Core-AV-Addr-FR-DT 7.79<0.01 1.66 5.86 11.91 43.41

Core-AV-Addr-FR-Best < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Location: A =24,V =28 Location: A =3,V =22, Addr = 7353d17994c0

6,000 200
4,000 - 100 |
2,000
0 T T T 0 T T T
0 200 400 600 0 200 400 600
(a) Core-AV median case for single thresholds (b) Core-AV-Addr median case for single thresholds
Location: A =26,V =31 Location: A =23,V =21, Addr = 7353d17996¢0
6,000 200
4,000 - 100 |
2,000
0 T T T 0 T T T
0 200 400 600 0 200 400 600
(c) Core-AV worst case for single thresholds (d) Core-AV-Addr worst case for single thresholds

Figure 6: Flush+Reload worst and median case histograms on EMR, (1x Emerald Rapids), for two attacker models.

Table 5: Error rates (%) for Zen5 — 1x Zen 5 (Granite Ridge)
— Fixed Frequency, No Prefetcher, Single Threshold

Model Avg. Min. QI Med. Q3 Max.
TU-FF 8.67<0.01<0.01 005 0.63 5034 . 107
TU-FR 3.19<0.01<0.01 0.10 0.20 50.10
TU-LFR <0.01<0.01<0.01<001<001 015 9|
Core-AV-FF 5.54<0.01<0.01 0.05 0.20 50.24 0 T T : —
Core-AV-FR 3.14<0.01<0.01 0.10 0.20 61.04 0 200 400 600
Addr-FF 0.98 < 0.01 < 0.01<0.01 0.05 43.21 (2) Flush+Flush, with rdt sc
Addr-FR 3.19<0.01<0.01 0.10 0.20 50.10 1 10°
Core-AV-FF-Best 0.01 <0.01 <0.01<0.01<0.01 0.15 8:2]
Core-AV-FR-Best <0.01<0.01<0.01<0.01<0.01 0.10 83 |
Core-AV-LFR-Best <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0 T T !
Core-AV-Addr-FF 0.38 <0.01 <0.01 <0.01 0.05 27.59 0 200 400 600
Core-AV-Addr-FR 3.01<0.01<0.01 0.10 0.20 49.76 " (b) Flush-+Flush, with rdpzru
Core-AV-Addr-FF-Best < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3
Core-AV-Addr-FR-Best < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

| i
contrary to what was usually assumed. Interestingly, Flush+ 0 H
Flush sees a much larger improvement with topology aware- 0 200 400 600
ness than Flush+Reload, and it goes from being noisier to (c) Flush+Reload, with rdpru
being significantly more accurate. There is thus a significant Figure 7: Flush+Flush and Flush+Reload TU histograms on

benefit to topology awareness (RQ2). Zen5 (1x Granite Ridge)

Overall, we can conclude that all three primitives are appli-
cable on modern x86 single-socket systems (RQ1), and that
topology awareness can often bring benefits, with variations
across micro-architectures (RQ2).

Multi-socket systems: Moving on to multi-socket systems,
we first verify assumptions about the symmetries of the system
used in the covert channel benchmark, and then discuss results
for two-socket Intel and AMD systems and a four-socket Intel
system. Table 12 and our online supplement (c¢f. Appendix C)
present results on 23 additional such machines.

4.4 Are Numa Systems Symmetric?

One key assumption for Experiment 2, the Covert Channel
Benchmark, is that the system behavior is symmetric with
respect to Numa nodes, i.e., swapping all Numa-nodes (A, V,
and M) leaves the behavior unchanged.

We illustrate this with Figure 2, showing histograms on
a dual-socket Sapphire Rapids system (2023). We plot both
the topology-unaware histogram (Figure 2a) and the 8 Numa-
AVM histograms (Figure 2b). The topology-unaware his-
togram exhibits quite a complex behavior, with several large
and wide humps. This behavior is not surprising: it is ex-
pected for Numa to cause large variations of latencies for
memory operations. In Figure 2b, we see that changing the
memory Numa-node (M) doesn’t change reload hit timings,
as expected for cache hits. Meanwhile, it is a major source
of variability for misses: e.g., with A =V, a reload is much
slower if A # M than when A = M = V, which must thus be
accounted for in attacks. As such, the behavior is complex,
makes topology-unaware classifiers ineffective, and motivates
our topology-aware approach.

As seen in Figure 2b, exchanging all Numa nodes, e.g.,
fromA=0,V=1,M=1t0A=1,V=0,M =0, results in
similar histograms. It is thus possible to explore all behaviors
of the system while considering only M = 0, which Section 5
relies on to accelerate the run-time of the experiments.

The hump width, and the overlap between hits and misses,
notably for (A,V, M) € {(0,1,0), (1,0, 1)}, hampers Flush+
Reload attacks, and motivates a fine-grained topology ap-
proach, i.e., one considering more than simply Numa-nodes.

4.5 Calibration of Two-socket Intel Systems

We have already seen Flush+Reload histograms for
esterel4l in Figure 2. Figure 8 presents, as a
complement, the Flush+Flush and Load/Flush+Reload
topology-unaware histograms. Table 6 shows the resulting
error rates under different attacker models. While all three
primitives’ error rates can be reduced satisfyingly under
the Numa-M-Core-AV-Best attacker model, Flush+Flush is
usually slightly better than Flush+Reload. Models without
choice remain exposed to excessively noisy worst cases.
Load/Flush+Reload, unsurprisingly, is much more reliable.

Thus, we conclude that on Intel two socket systems all three
primitives are applicable (RQ1), and that topology awareness
leads to significant improvements (RQ2)

10

-107

1.5
1 .
" Mg,
0 T \ \ T T
0 200 400 600 800 1,000 1,200
(a) Flush+Flush
107
1.5
1 |
] o
0 T T T T T
0 200 400 600 800 1,000 1,200
(b) Load/Flush+Reload

Figure 8: Flush+Flush and Load/Flush+Reload TU his-
tograms on esterel4l (2x Sapphire Rapids)

Table 6: Error rates (%) for esterel41l — 2X Sapphire
Rapids — Fixed Frequency, No Prefetcher

Model Avg. Min. Q1 Med. Q3 Max.
TU-FF-DT 7.69<0.01 0.05 1.27 11.91100.00
TU-FR-DT 31.86 <0.01 6.05 33.40 50.00 100.00
TU-LFR-ST <0.01<0.01<0.01<0.01<0.01 23.05
Numa-M-Core-AV-FF-ST 3.80<0.01 <0.01 <0.01 2.25 78.71
Numa-M-Core-AV-FR-ST 16.48 < 0.01 <0.01 1.51 35.60100.00

Numa-M-Core-AV-LFR-ST < 0.01 <0.01 <0.01 <0.01 <0.01 6.98

Numa-M-Core-AV-FF-Best < 0.01 < 0.01 <0.01 <0.01 <0.01 <0.01
Numa-M-Core-AV-FR-Best < 0.01 < 0.01 <0.01 <0.01 <0.01 <0.01
Numa-M-Core-AV-LFR-Best < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <0.01

Numa-M-Core-AV-Addr-FF
Numa-M-Core-AV-Addr-FR

1.53 <0.01 <0.01<0.01
6.57<0.01<0.01 0.49

0.15 41.06
8.94 47.75

4.6 Calibration of Two-socket AMD Systems

For multi-socket AMD systems, Figure 9 shows the three
topology-unaware histograms and Table 7 shows a subset
of the error predictions, where the parameters make a differ-
ence. Load/Flush+Reload is the most accurate, unsurprisingly.
Topology awareness improves significantly the accuracy of
Flush+Reload and Flush+Flush, with the average error rate
respectively going from 18% and 12% in topology unaware,
down to 2.1% and 0.12% with Numa-M-Core-AV, and 0.9%
and 0.03% under Numa-M-Core-AV. Adding the ability to
choose, with the Numa-M-Core-AV-Best model, is enough
to make the error rate negligible. Here, ranges (-DT) are also
more accurate than thresholds (-ST) for Flush+Reload.

We conclude that Flush+Flush works on multi-socket AMD
systems, and is worth using instead of Flush+Reload, while
Load/Flush+Reload is the best covert channel (RQ1). Topol-
ogy awareness is, again, needed for accurate attacks (RQ2).

[1

0 200 400 600 800

1,000 1,200 1,400

(a) Flush+Flush, with rdpru
10’

A

0 200 400 600 800 1,000 1,200 1,400

(b) Flush+Reload, with rdpru

LN

0 200 400 600 800

-107

1,000 1,200 1,400

(c) Load/Flush+Reload, with rdpru

Figure 9: Flush+Flush and Load/Flush+Reload TU his-
tograms on musa (2x Zen 4 (Genoa))

4.7 Calibration of a Four-socket Intel System

We also tested the 4x Skylake SP yet i machine. The results
were overall similar to the two-socket machines, with however
an extra bump in the topology-unaware histogram, cf. Fig-
ure 10. Those extra modes arise from the fact that the victim V,
attacker A, and target memory controller M can be in distinct
sockets, which is not possible with only two sockets. This
complex behavior underlines the need for a topology-aware
approach, as distinguishing all the topology configurations
gives histograms that are far more tractable for classification.
The overall conclusion does not change either, all three
primitives are applicable (RQ1), with topology awareness
improving significantly the attack’s accuracy RQ2.

Conclusion On both single and multi-socket systems, we
have demonstrated the applicability of Flush+Reload, Flush+
Flush, and Load/Flush+Reload (RQ1). Depending on the
micro-architecture, and the attacker model, there can be vari-
ation about which of Flush+Flush and Flush+Reload is the
most accurate. However, Flush+Flush often ends up having
an edge over Flush+Reload, while Load/Flush+Reload covert
channels are always the most accurate.

We also observe that overall topology-aware approaches
usually manage to obtain negligible error rates for at least
one of Flush+Reload or Flush+Flush, and generally provide
significant accuracy improvements (RQ2).

11

Table 7: Error rates (%) for musa — 2Xx Zen 4 (Genoa) —
Fixed Frequency, No Prefetcher

Model Avg. Min. Q1 Med. Q3 Max.
TU-FF 12.66 < 0.01 < 0.01 < 0.01 49.85 51.51
TU-FR-DT 18.01 <0.01 6.25 8.89 22.31 90.48
TU-LFR <0.01<0.01<0.01 <0.01<0.01 0.34

Numa-M-Core-AV-FF-ST
Numa-M-Core-AV-FR-ST
Numa-M-Core-AV-FR-DT

0.12<0.01 <0.01 <0.01 <0.01 50.05
7.61<0.01 4.64 6.79 9.18 87.55
2.10<0.01 0.20 0.68 1.95 68.80

Numa-M-Core-AV-FF-Best
Numa-M-Core-AV-FR-Best
Numa-M-Core-AV-LFR-Best

<0.01 <0.01 <0.01 <0.01<0.01<0.01
<0.01 <0.01 <0.01 <0.01 <0.01<0.01
<0.01 <0.01 <0.01<0.01<0.01<0.01

Numa-M-Core-AV-Addr-FF-ST ~ 0.03 < 0.01 < 0.01 < 0.01 <0.01 49.56
Numa-M-Core-AV-Addr-FR-ST ~ 6.55<0.01 3.86 6.54 8.94 48.39
Numa-M-Core-AV-Addr-FR-DT 0.93 <0.01 0.05 0.39 0.93 47.36

5 Results for Experiment 2: Covert Channel

In this section, we answer RQ3, “What covert-channel true-
capacity can be achieved using the best trade-off between
accuracy and attack speed?”. We ran our generic covert chan-
nel benchmark on three different attacker models, topology-
unaware TU, topology-aware TA (Numa-M-Core-AV-Addr),
and the best choice topology-aware Best-TA (Numa-M-Core-
AV-Addr-Best). We report in Appendix D.2 the full results,
including standard deviations, for the five machines we discuss
here. For each, we report p, the error rate (lower is better), C,
the bandwidth, and 7', the true capacity, cf. Section 3.4.
Table 8 presents the results on the single socket Zenb5 sys-
tem. Flush+Flush displays a steady decrease in error rate
using more detailed models. However, Flush+Reload and
Load/Flush+Reload have error rates below the standard de-
viation, and see an uptick in the TA model. To determine

108
1.5
1 |
03] m JW
0 T T T T
0 200 400 600 800
(a) Flush+Flush
108
1 |
s | /\ A
0 L T /\ T \
0 200 400 600 800
(b) Flush+Reload

Figure 10: Flush+Reload and Flush+Flush TU histograms for
yeti (4x Skylake SP)

Table 8: Covert Channel Results for Zen5 — 1x Zen 5 (Gran-
ite Ridge) — Fixed Frequency, No Prefetcher

Primitive)4 C T op oC oT
Model (%) (Mbit/s) (Mbit/s) (%) (Mbit/s) (Mbit/s)
TU 2458 222 0465.19 0.03 0.17
FF TA 19.73 221 0.64271 0.05 0.16
Best-TA 0.67 2.07 1.95 0.00 0.00 0.00
TU 056 230 223224 0.02 024
FR TA 1.12 229 2.132.04 0.02 0.26
Best-TA 0.00 2.27 227 0.00 0.00 0.00
TU 0.04 489 487002 0.10 0.11
LFR TA 0.05 489 4860.15 0.09 0.10
Best-TA 0.00 498 498 0.00 0.00 0.00

whether this is a spurious uptick or if this is a real effect, more
samples would be required.

Overall here, we see that Flush+Reload performs better than
Flush+Flush, and that Load/Flush+Reload performs much
better than either. A Load/Flush+Reload channel has an
4.9 Mbit/s bandwidth, with only marginal improvement from
topology awareness. Meanwhile, topology awareness im-
proves significantly Flush+Flush, which sees its bandwidth
go from 0.46 Mbit/s to 1.95 Mbit/s, thanks to a division by
36 of the error rate.

Table 9 shows a sample of results from the 4 other ma-
chines in Appendix D.2. It shows that Load/Flush+Reload is
undoubtedly the best covert channel, and that Flush+Reload
and Flush+Flush benefit from topology awareness.

More generally, we observe on our data set that Load/Flush+
Reload has a much higher bandwidth (> 1.5x) than Flush+
Flush and Flush+Reload. It usually does not require topology
awareness, while such awareness can improve Flush+Reload
and Flush+Flush significantly.

On AMD machines, Flush+Flush is usually worse than
Flush+Reload, while on Intel machines Flush+Flush performs
better. The observed error rates tend to be above the prediction,
which is an optimistic bound, but do vary in a consistent way
overall. Machines with very high predicted error rates also
have high error rates (and even impossible to exploit topology-
unaware Flush+Reload for EMR), while machines where we
expect low error rates produce low error rates (e.g., ARL).

It is worth noting that the lowest error rates reported tend to
be below the uncertainty of the measure, given the number of
samples we have, which sometimes explain a slight increase
in error rate when increasing the model quality.

Overall, this validates that Load/Flush+Reload is an effec-
tive covert channel, with speeds around 5 Mbit/s on ARL and
Zen5, and above 2.5 Mbit/s on multi-socket systems. For the
other attack primitives, topology awareness can improve the
accuracy, but may reduce the raw bandwidth. Consequently,

12

Table 9: Other results for covert channels

Machine Attack Attacker p C T
Model (%) (Mbit/s) (Mbit/s)
FF TU 0.00 320 3.20
ARL
Arrow Lake TR TU 001 273 273
LFR TU 0.01 543 542
FF TU 0.06 2.07 2.06
EMR FR TU 55.47 1.68 -
Emerald FR TA 34.97 1.74 0.42
Rapids FR Best-TA 0.00 220 2.20
LFR TU 0.19 328 3.22
FF TU 26.67 132 0.65
estere1al FF BestTA 0.67 2.07 1.95
2x Sapphire FR TU 30.89 1.47 0.51
Rapids FR BestTA 0.00 2.27 2.27
LFR TU 0.19 254 249
FF TU 43.67 1.13 0.03
FF Best-TA 42.33 1.88 0.03
musa FR TU 36.85 .11 0.13
2% Zen 4
(Genoa) FR Best-TA 0.00 1.88 1.88
LFR TU 020 213 2.08
LFR Best-TA 0.00 292 292

depending on the machine, the tradeoff may differ. Some
level of topology awareness can be needed to make attack
viable, but the model with the best predicted error rate isn’t
necessarily the one with the highest true capacity.

One further source of noise, is that the transmission uses
several cache lines in parallel, to maximize the bandwidth.
This could interfere with the individual latencies, and con-
tribute to the degradation in accuracy.

We can conclude regarding RQ3 that the tradeoffs vary
depending on the system, but that it is usually possible to
achieve a bandwidth in the Mbit/s range with at least one of
Flush+Flush and Flush+Reload with suitable topology aware-
ness, and that Load/Flush+Reload will usually be significantly
better than either of these, by a factor of X1.5 or even X2.

6 Discussion

6.1 Limitations

While our study spans a wide range of architectures, several
limitations remain. First, the measured covert-channel band-
widths do not always match our timing-based predictions,
possibly due to limited sampling in some configurations. Ad-
ditional measurements would be needed to refine error-rate

estimates. Second, our calibration process tends to keep a
DRAM row open, which may lower observed miss latencies.
It also executes on a system with very little memory traffic,
which results in less accurate results under higher memory
traffic settings, such as our multi-cache line covert channel.
Future work should develop sampling methods that mitigate
these biases. Finally, the applicability of topology-aware cal-
ibration must be considered in the context of the attacker
model. In native scenarios, an attacker can often control its
own NuMa node or core placement and influence the victim
through the scheduler. In contrast, such control may be limited
or unavailable in other threat models, including virtualized
environments, cloud systems, or web browsers.

6.2 Related Work

Didier and Maurice [5] introduced a slice-aware calibration
method for the Flush+Flush attack on Intel client CPUs. Their
work observed that the execution time of c1f1ush depends
on the targeted cache slice of the LLLC, which in Intel ar-
chitectures is partitioned into per-core slices. This slice is
determined by hashing the physical address, which is not ac-
cessible to the attacker. When the hashing function is linear,
i.e., when the number of slices is a power of two [13], within
each virtual page, the equivalence class of addresses that map
to the same slice is easily accessible, which is used by Di-
dier and Maurice [5]. This approach was practical on Intel
CPUs, where the hashing function is linear, but less so on
architectures where this assumption does not hold, such as
AMD systems with undocumented slice mappings.

In the case of client Intel CPUs, Didier and Maurice’s
topology-aware method [5] reduces the error rate of Flush+
Flush to less than 0.01%, from 20% previously, while also
tripling its bandwidth. Their findings highlight the importance
of incorporating architectural and topological factors into at-
tack calibration, a principle we extend and generalize in our
work to multi-socket and AMD systems. We cover generalize
to a much larger range of micro-architecture, instead of only
Intel client CPUs whose number of core is a power of two,
and also account for the extra factors induced by Numa in
multi-socket system.

6.3 Future Work

In some cases, using a range instead of a threshold to classify
attack outcomes leads to better accuracy. Consequently, there
could be room to evaluate whether more elaborate classifica-
tion strategies than a single threshold are relevant. Rauscher
et al. [18] introduced metrics to quantify the quality of cache
attack primitives, however, these metrics are only suitable for
topology-unaware approaches, using a single global threshold.
Future work could adapt such metrics to more complex classi-
fication strategies and apply them to complex systems where
topology awareness is required. Our data also show complex

13

behavior of the cache hierarchy on AMD CPUs, in particular
those with multiple compute dies. There is thus room for
further reverse engineering of AMD’s cache hierarchy and
topology, as it is not as well known as Intel’s [1,4].

This work focused on x86 architectures, however, complex
CPUs using the ARM and RISC-V ISAs have started shipping.
As such, a similar assessment of the benefit of the topology
awareness on attacks would be valuable, applying to Evict+
Reload and Prime+Probe. On Risc-V [2], it has been shown
Flush+Flush and Flush+Reload could also be applicable on
CPUs implementing the Zichom extension.

Additionally, it would also be worth checking how Evict+
Reload, Prime+Probe and attacks based on prefetchw [9]
behave on more recent and multi-socket systems. While
it would be unexpected for Prime+Probe to be effective in
systems that share neither a last-level cache nor a cache-
coherence directory, such as multi-socket systems, this as-
sumption should be verified.

7 Conclusion and Further Work

We have evaluated the performance of Flush+Flush and Flush+
Reload on different 36 systems, both from AMD and Intel,
including a large spread of micro-architectures, and in par-
ticular recent ones. We showed that Flush+Flush and Flush+
Reload were widely applicable to all these machines, including
multi-socket and AMD systems, but that accurate attacks may
require topology awareness. In particular, on Numa-system,
Numa-node rebalancing must be avoided to get reliable at-
tacks, and Numa-awareness is critical to accurate attacks. In
addition, we presented Load/Flush+Reload, a new covert-
channel primitive that achieves high accuracy and 1.5% true
capacity improvement over Flush+Reload and Flush+Flush.
Overall, topology awareness is essential for reliable cache
attacks on contemporary x86 architectures.

Acknowledgments

Multi-socket experiments used the Grid’5000 test-bed [3],
supported by a scientific interest group hosted by Inria, in-
cluding CNRS, RENATER, several universities, and other
organizations (c.f. https://www.grid5000. fr).

This project started at IRISA, with support from the French
DGA, and was then pursued at Saarland University. This
work has received funding from the European Research Coun-
cil under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 101020415).

We would also like to thank Stefan Gast for the measure-
ments ont the 1ab 32 (Zendc) machine, and Jan REINEKE for
his advice and thorough feedback.

https://www.grid5000.fr

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

Andreas Abel and Jan Reineke. nanobench: A low-
overhead tool for running microbenchmarks on x86 sys-
tems. In IEEE International Symposium on Performance
Analysis of Systems and Software, ISPASS, 2020.

Cédrick Austa, Jan Tobias Miihlberg, and Jean-Michel
Dricot. Systematic assessment of cache timing vulnera-
bilities on RISC-V processors. In 30th European Sym-
posium on Research in Computer Security (ESORICS),
2025.

Daniel Balouek, Alexandra Carpen Amarie, Ghislain
Charrier, Frédéric Desprez, Emmanuel Jeannot, Em-
manuel Jeanvoine, Adrien Lebre, David Margery, Nico-
las Niclausse, Lucas Nussbaum, Olivier Richard, Chris-
tian Pérez, Flavien Quesnel, Cyril Rohr, and Luc
Sarzyniec. Adding virtualization capabilities to the
Grid’5000 testbed. In Communications in Computer
and Information Science. 2013.

Miles Dai, Riccardo Paccagnella, Miguel Gomez-Garcia,
John McCalpin, and Mengjia Yan. Don’t Mesh Around:
Side-Channel Attacks and Mitigations on Mesh Inter-
connects. In 31st USENIX Security Symposium, 2022.

Guillaume Didier and Clémentine Maurice. Calibration
Done Right: Noiseless Flush+Flush Attacks. In DIMVA,
2021.

Guillaume Didier, Clémentine Maurice, Antoine
Geimer, and Walid J. Ghandour. Characterizing Prefetch-
ers using CacheObserver. In SBAC-PAD, 2022.

Stefan Gast, Jonas Juffinger, Martin Schwarzl, Gururaj
Saileshwar, Andreas Kogler, Simone Franza, Markus
Kostl, and Daniel Gruss. SQUIP: exploiting the sched-
uler queue contention side channel. In 44th IEEE Sym-
posium on Security and Privacy, SP, 2023.

Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard. Flush+Flush: A Fast and Stealthy
Cache Attack. In Detection of Intrusions and Malware,
and Vulnerability Assessment (DIMVA), 2016.

Yanan Guo, Andrew Zigerelli, Youtao Zhang, and Jun
Yang. Adversarial prefetch: New cross-core cache side
channel attacks. In 2022 IEEE Symposium on Security
and Privacy (S&P), 2022.

John L. Hennessy and David A. Patterson. Computer
Architecture - A Quantitative Approach. Morgan Kauf-
mann, 6th edition edition, 2019.

Intel Corporation. Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual, 2025.

14

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

Moritz Lipp, Daniel Gruss, and Michael Schwarz. AMD
prefetch attacks through power and time. In 315t USENIX
Security Symposium, USENIX Security, 2022.

Clémentine Maurice, Nicolas Le Scouarnec, Christoph
Neumann, Olivier Heen, and Aurélien Francillon. Re-
verse engineering intel last-level cache complex address-
ing using performance counters. In RAID, 2015.

Vijay Nagarajan, Daniel J. Sorin, Mark D. Hill, and
David A. Wood. A Primer on Memory Consistency and
Cache Coherence. Synthesis Lectures on Computer Ar-
chitecture. Morgan & Claypool Publishers, 2nd edition
edition, 2020.

Hamed Okhravi, Stanley Bak, and Samuel T. King. De-
sign, implementation and evaluation of covert channel
attacks. In 2010 IEEE International Conference on Tech-
nologies for Homeland Security (HST), 2010.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: The case of AES. In CT-
RSA, 2006.

Colin Percival. Cache missing for fun and profit. In
BSDCan, 2005.

Fabian Rauscher, Carina Fiedler, Andreas Kogler, and
Daniel Gruss. A systematic evaluation of novel and
existing cache side channels. In NDSS. The Internet
Society, 2025.

Thomas Rokicki, Clémentine Maurice, Marina Botvin-
nik, and Yossi Oren. Port contention goes portable: Port
contention side channels in web browsers. In ASIA CCS,
2022.

Wenjie Xiong and Jakub Szefer. Survey of transient
execution attacks and their mitigations. ACM Computing
Surveys, 2021.

Mengjia Yan, Read Sprabery, Bhargava Gopireddy,
Christopher W. Fletcher, Roy H. Campbell, and Josep
Torrellas. Attack directories, not caches: Side channel at-
tacks in a non-inclusive world. In 2019 IEEE Symposium
on Security and Privacy (S&P), 2019.

Yuval Yarom and Katrina Falkner. Flush+Reload: A
High Resolution, Low Noise, L3 Cache Side-Channel
Attack. In 23rd USENIX Security Symposium, 2014.

A Atrtifact

We provide, for review purposes, an anonymized version of

our experimental code on Anonymous 4 Open Science’.

B List of All Machines

Table 11 lists the 36 machines we used in this study.

C Detailed Results

Table 12 includes a summary of the average predicted error
rates under the TU, TA and Best-TA attacker models, for all
three attack primitives, using simple thresholds.

We also provide an online supplement, available for review
on Zenodo via this link®, which contains the full results, for
calibration and covert-channel benchmark, under all attacker
models, for all 36 machines, and with both fixed frequency
and variable frequency settings.

We also intend to make available the experimental results
files (> 10 GiB) and the rust library needed to deserialize them.

D Additional Results

D.1 Single-socket Zen 2 (Matisse)

To further illustration Section 4.3, we include in Table 10
results on a second client, single die, single-socket AMD
system.

D.2 Covert Channel Results

We include the full table of results for the 5 machines dis-
cussed in Section 5, as Tables 13 to 17. Further results for the

whole data set of 36 can be found in the online supplement
(cf- Appendix C).

"https://anonymous.4open.science/r/flush-based
—cache-attacks-modern-x86-0DD2/

8https://zenodo.org/records/174852532token=ey
JhbGci0iJIUzUxMiIsImlhdCI6MTc2MTgzNDEYyOCwiZXhwI j
0xNzcyMzIzMTk5fQ.eyJpZCI6T JVhMDAYMmMVKLTASZmELND1
mZi04MGY4LTcyYjQO3NGVkYTEZZSIsImRhdGEiIOnt 9LCIyYW5S
kb201i01iI3NTQ3NWRmMN2JJNDQ4ZmJImY JEONzUyMmQ1O0TULYzE
4NyJ9.Sjz0pZfNR69wbthozAlB1DiI18t9dEGSv5Pgd3jUu9t
19EsuyijdiPs7EGM89V8L-0DiJoSrHwN3c02x0oBRA3jw

15

Table 10: Error rates (%) for Zen2 — 1x Zen 2 (Matisse) —
Fixed Frequency, No Prefetcher

Model Avg. Min. Ql Med. Q3 Max.
TU-FF 0.74<0.01 <0.01 <0.01 1.12 12.55
TU-FR 16.97 <0.01 0.05 2.44 38.28 84.33
TU-LFR <0.01 <0.01 <0.01 <0.01 <0.01 0.05
Core-AV-FF 0.52<0.01<0.01<0.01 0.24 9.47
Core-AV-FR 12.79 < 0.01 <0.01 0.05 21.04 84.72
Addr-FF 0.61 <0.01 <0.01 <0.01 0.83 11.18
Addr-FR-ST 10.81 < 0.01 <0.01 0.10 3.52 52.64

Core-AV-FF-Best <0.01<0.01<0.01<0.01<0.01 0.15
Core-AV-FR-Best-ST < 0.01 <0.01 < 0.01 <0.01 <0.01<0.01
Core-AV-LFR-Best-ST < 0.01 < 0.01 < 0.01 <0.01 < 0.01 < 0.01

Core-AV-Addr-FF-DT 0.09 < 0.01 < 0.01 <0.01 <0.01 4.10
Core-AV-Addr-FR-DT 5.07<0.01 <0.01 <0.01 1.12 48.44

Core-AV-Addr-FF-Best < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

https://anonymous.4open.science/r/flush-based-cache-attacks-modern-x86-0DD2/
https://zenodo.org/records/17485253?token=eyJhbGciOiJIUzUxMiIsImlhdCI6MTc2MTgzNDEyOCwiZXhwIjoxNzcyMzIzMTk5fQ.eyJpZCI6IjVhMDAyMmVkLTA5ZmEtNDlmZi04MGY4LTcyYjQ3NGVkYTEzZSIsImRhdGEiOnt9LCJyYW5kb20iOiI3NTQ3NWRmN2JjNDQ4ZmJmYjE0NzUyMmQ1OTU1YzE4NyJ9.Sjz0pZfNR69wbthozAlBlDiI18t9dEGSv5Pqd3jU9t19EsuyijdiPs7EGM89V8L-0DiJoSrHwN3c02xoBRd3jw
https://anonymous.4open.science/r/flush-based-cache-attacks-modern-x86-0DD2/
https://anonymous.4open.science/r/flush-based-cache-attacks-modern-x86-0DD2/
https://zenodo.org/records/17485253?token=eyJhbGciOiJIUzUxMiIsImlhdCI6MTc2MTgzNDEyOCwiZXhwIjoxNzcyMzIzMTk5fQ.eyJpZCI6IjVhMDAyMmVkLTA5ZmEtNDlmZi04MGY4LTcyYjQ3NGVkYTEzZSIsImRhdGEiOnt9LCJyYW5kb20iOiI3NTQ3NWRmN2JjNDQ4ZmJmYjE0NzUyMmQ1OTU1YzE4NyJ9.Sjz0pZfNR69wbthozAlBlDiI18t9dEGSv5Pqd3jU9t19EsuyijdiPs7EGM89V8L-0DiJoSrHwN3c02xoBRd3jw
https://zenodo.org/records/17485253?token=eyJhbGciOiJIUzUxMiIsImlhdCI6MTc2MTgzNDEyOCwiZXhwIjoxNzcyMzIzMTk5fQ.eyJpZCI6IjVhMDAyMmVkLTA5ZmEtNDlmZi04MGY4LTcyYjQ3NGVkYTEzZSIsImRhdGEiOnt9LCJyYW5kb20iOiI3NTQ3NWRmN2JjNDQ4ZmJmYjE0NzUyMmQ1OTU1YzE4NyJ9.Sjz0pZfNR69wbthozAlBlDiI18t9dEGSv5Pqd3jU9t19EsuyijdiPs7EGM89V8L-0DiJoSrHwN3c02xoBRd3jw
https://zenodo.org/records/17485253?token=eyJhbGciOiJIUzUxMiIsImlhdCI6MTc2MTgzNDEyOCwiZXhwIjoxNzcyMzIzMTk5fQ.eyJpZCI6IjVhMDAyMmVkLTA5ZmEtNDlmZi04MGY4LTcyYjQ3NGVkYTEzZSIsImRhdGEiOnt9LCJyYW5kb20iOiI3NTQ3NWRmN2JjNDQ4ZmJmYjE0NzUyMmQ1OTU1YzE4NyJ9.Sjz0pZfNR69wbthozAlBlDiI18t9dEGSv5Pqd3jU9t19EsuyijdiPs7EGM89V8L-0DiJoSrHwN3c02xoBRd3jw
https://zenodo.org/records/17485253?token=eyJhbGciOiJIUzUxMiIsImlhdCI6MTc2MTgzNDEyOCwiZXhwIjoxNzcyMzIzMTk5fQ.eyJpZCI6IjVhMDAyMmVkLTA5ZmEtNDlmZi04MGY4LTcyYjQ3NGVkYTEzZSIsImRhdGEiOnt9LCJyYW5kb20iOiI3NTQ3NWRmN2JjNDQ4ZmJmYjE0NzUyMmQ1OTU1YzE4NyJ9.Sjz0pZfNR69wbthozAlBlDiI18t9dEGSv5Pqd3jU9t19EsuyijdiPs7EGM89V8L-0DiJoSrHwN3c02xoBRd3jw
https://zenodo.org/records/17485253?token=eyJhbGciOiJIUzUxMiIsImlhdCI6MTc2MTgzNDEyOCwiZXhwIjoxNzcyMzIzMTk5fQ.eyJpZCI6IjVhMDAyMmVkLTA5ZmEtNDlmZi04MGY4LTcyYjQ3NGVkYTEzZSIsImRhdGEiOnt9LCJyYW5kb20iOiI3NTQ3NWRmN2JjNDQ4ZmJmYjE0NzUyMmQ1OTU1YzE4NyJ9.Sjz0pZfNR69wbthozAlBlDiI18t9dEGSv5Pqd3jU9t19EsuyijdiPs7EGM89V8L-0DiJoSrHwN3c02xoBRd3jw
https://zenodo.org/records/17485253?token=eyJhbGciOiJIUzUxMiIsImlhdCI6MTc2MTgzNDEyOCwiZXhwIjoxNzcyMzIzMTk5fQ.eyJpZCI6IjVhMDAyMmVkLTA5ZmEtNDlmZi04MGY4LTcyYjQ3NGVkYTEzZSIsImRhdGEiOnt9LCJyYW5kb20iOiI3NTQ3NWRmN2JjNDQ4ZmJmYjE0NzUyMmQ1OTU1YzE4NyJ9.Sjz0pZfNR69wbthozAlBlDiI18t9dEGSv5Pqd3jU9t19EsuyijdiPs7EGM89V8L-0DiJoSrHwN3c02xoBRd3jw
https://zenodo.org/records/17485253?token=eyJhbGciOiJIUzUxMiIsImlhdCI6MTc2MTgzNDEyOCwiZXhwIjoxNzcyMzIzMTk5fQ.eyJpZCI6IjVhMDAyMmVkLTA5ZmEtNDlmZi04MGY4LTcyYjQ3NGVkYTEzZSIsImRhdGEiOnt9LCJyYW5kb20iOiI3NTQ3NWRmN2JjNDQ4ZmJmYjE0NzUyMmQ1OTU1YzE4NyJ9.Sjz0pZfNR69wbthozAlBlDiI18t9dEGSv5Pqd3jU9t19EsuyijdiPs7EGM89V8L-0DiJoSrHwN3c02xoBRd3jw

Table 11: Machines used in this work

Name Processors p-arch N C/T oS
abacus25 2x AMD EPYC 7413 Zen 3 (Milan) 2 2x 24/48 Deb. 11
chiclet 2x AMD EPYC 7301 Zen 1 (Naples) 2 2% 16/32 Deb. 11
chifflot 2x Intel Xeon Gold 6126 Skylake SP 2 2% 12/24 Deb. 11
chirop 2x Intel Xeon Platinum 8358 Ice Lake SP 2 2% 32/64 Deb. 11
dahu 2x Intel Xeon Gold 6130 Skylake SP 2 2% 16/32 Deb. 11
econome 2x Intel Xeon E5-2660 Sandy Bridge EP 2 2% 8/16 Deb. 11
ecotype 2x Intel Xeon E5-2630L v4 Broadwell EP 2 2x 10/20 Deb. 11
esterel4l 2x Intel Xeon Gold 6426Y Sapphire Rapids 2 2% 16/32 Deb. 11
graffiti 2x Intel Xeon Silver 4110 Skylake SP 2 2% 8/16 Deb. 11
grappe 2x Intel Xeon Gold 5218R Cascade Lake SP 2 2% 20/40 Deb. 11
grele 2x Intel Xeon E5-2650 v4 Broadwell EP 2 2% 12/24 Deb. 11
grue 2x AMD EPYC 7351 Zen 1 (Naples) 8 2% 16/32 Deb. 11
kinovis 2x Intel Xeon Gold 6442Y Sapphire Rapids 2 2x 24/48 Deb. 11
mercantour2 2X Intel Xeon E5-2650 v2 Ivy Bridge EP 2 2x 8/16 Deb. 11
montcalm 2x Intel Xeon Silver 4314 Ice Lake SP 2 2% 16/32 Deb. 11
musa 2x AMD EPYC 9254 Zen 4 (Genoa) 2 2% 24/48 Deb. 11
nova 2x Intel Xeon E5-2620 v4 Broadwell EP 2 2% 8/16 Deb. 11
paradoxe 2x Intel Xeon Gold 5320 Ice Lake SP 2 2% 26/52 Deb. 11
parasilo 2x Intel Xeon E5-2630 v3 Haswell EP 2 2% 8/16 Deb. 11
petitprince 2x Intel Xeon E5-2630L Sandy Bridge EP 2 2% 6/12 Deb. 11
roazhonb 2x Intel Xeon E5-2660 v3 Haswell EP 2 2% 10/20 Deb. 11
sagittaire 2x AMD Opteron 250 K8 2 2% 1/1 Deb. 11
servan 2x AMD EPYC 7352 Zen 2 (Rome) 2 2x 24/48 Deb. 11
troll 2x Intel Xeon Gold 5218 Cascade Lake SP 2 2% 16/32 Deb. 11
uvb 2x Intel Xeon X5670 Westmere EP 2 2x 6/12 Deb. 11
yeti 4x Intel Xeon Gold 6130 Skylake SP 4 4% 16/32 Deb. 11
ARL Intel Core Ultra 7 265K Arrow Lake 1 8/8P+12/12E Ub. 24.10
CFL Intel Core 17-8700K Coffee Lake 1 6/12 Ub. 24.04
EMR Intel Xeon Silver 4514Y Emerald Rapids 1 16/32 Ub. 24.10
lab32 AMD EPYC 8024P Zen 4c (Sienna) 1 8/16 (2x 4/8) Ub. 22.04
Ripper AMD Threadripper 5995WX Zen 3 (Chagall) 1 64/128 (8x 8/16) Ub. 24.04
Zen?2 AMD Ryzen 7 3700X Zen 2 (Matisse) 1 8/16 Ub. 20.04
zZen3 AMD Ryzen 5 5600X Zen 3 (Vermeer) 1 6/12 Ub. 20.04
Zend AMD Ryzen 5 7600X Zen 4 (Raphael) 1 6/12 Ub. 22.04
zZenb AMD Ryzen 7 9700X Zen 5 (Granite Ridge) 1 8/16 Ub. 24.10
ZenP AMD Ryzen 5 2600 Zen+ (Pinnacle Ridge) 1 6/12 Ub. 18.04

Ripper and 1ab32 are multi-die modules, whose number of dies and of Core/Threads per die are indicated between brackets

after te total number of Core/Thread in the system.

16

Table 12: Summary of results for all 36 machines, with fixed frequency and single-threshold classifier

) Flush+Flush Flush+Reload Load/Flush+Reload
Machine TU TABest-TA TU TABestTA TU TABest-TA
abacus25 15.74 0.39 <0.0122.54 396 <0.01<0.01<0.01 <0.01
chiclet 6.02<0.01 <0.0116.69 0.86 <0.01<0.01<0.01 <0.01
chifflot 25.00 1.00 <0.0125.01 6.10 <0.01<0.01<0.01 <0.01
chirop 25.01 1.11 <0.0127.71 2.72 <0.01<0.01<0.01 <0.01
dahu 25.00 1.06 <0.0125.00 7.39 <0.01<0.01<0.01 <0.01
econome 25.00<0.01 <0.0124.35 0.29 <0.01<0.01<0.01 <0.01
ecotype 25.01 2.16 <0.0125.02 11.16 <0.01<0.01<0.01 <0.01
esterel4l 27.55 1.53 <0.0134.15 6.57 <0.01<0.01<0.01 <0.01
graffiti 25.00 1.26 <0.0125.01 8.56 <0.01<0.01<0.01 <0.01
grappe 25.00 1.15 <0.0125.00 2.07 <0.01<0.01<0.01 <0.01
grele 25.00 1.61 <0.0125.04 11.55 <0.01<0.01<0.01 <0.01
grue 6.17<0.01 <0.0116.62 093 <0.01<0.01<0.01 <0.01
kinovis 27.66 2.29 <0.0134.40 8.08 <0.01<0.01<0.01 <0.01
mercantour2 25.00 11.56 <0.0124.02 10.86 <0.01 <0.01<0.01 <0.01
montcalm 25.00 1.19 <0.0125.52 0.99 <0.01<0.01<0.01 <0.01
musa 12.66 0.03 <0.0124.25 6.55 <0.01<0.01<0.01 <0.01
nova 25.00 1.89 <0.0125.01 10.05 <0.01<0.01<0.01 <0.01
paradoxe 25.00 1.14 <0.0125.62 0.64 <0.01<0.01<0.01 <0.01
parasilo 25.00<0.01 <0.0124.18 0.31 <0.01<0.01<0.01 <0.01
petitprince 25.00<0.01 <0.0120.29 1.44 <0.01<0.01<0.01 <0.01
roazhon5 25.00<0.01 <0.0125.00 0.78 <0.01<0.01<0.01 <0.01
sagittaire 25.00 2498 <0.0138.90 3737 391<0.01<0.01 <0.01
servan 35.65 6.09 <0.0137.96 9.48 <0.01<0.01<0.01 <0.01
troll 25.00 1.27 <0.0125.00 2.32 <0.01<0.01<0.01 <0.01
uvb 338 0.02 <0.0124.31 1.04 <0.01<0.01<0.01 <0.01
yeti 19.19 1.66 <0.0133.78 1.46 <0.01<0.01<0.01 <0.01
ARL <0.01<0.01 <0.01 0.01<0.01 <0.01<0.01<0.01 <0.01
CFL 18.73 1446 <0.01 0.04 5.12 <0.01<0.01<0.01 <0.01
EMR 0.05 0.02 <0.0141.34 0.01 <0.01<0.01<0.01 <0.01
lab32 0.75<0.01 <0.0125.16 196 <0.01<0.01<0.01 <0.01
Ripper 0.34 0.25 <0.0110.20 0.06 <0.01<0.01<0.01 <0.01
Zen2 0.74 0.52 <0.0116.97 0.26 <0.01<0.01<0.01 <0.01
Zen3 438 2.84 <0.01 0.03 0.0 <0.01<0.01<0.01 <0.01
Zen4 0.87 0.32 0.01 0.08 0.04 <0.01<0.01<0.01 <0.01
Zenb 8.67 554 0.01 3.19 038 <0.01<0.01<0.01 <0.01
ZenP 10.69 7.79 0.2528.95 7.51 <0.01<0.01<0.01 <0.01

17

Table 13: Covert Channel Results for ARL — 1Xx Arrow Lake
— Fixed Frequency, No Prefetcher

Model)4 C T op oC oT
Primitive (%) (Mbit/s) (Mbit/s) (%) (Mbit/s) (Mbit/s)
FF 0.00 320 3.200.05 0.15 0.16
TU FR 001 273 2.730.13 020 0.21
LFR0.01 543 5420.14 0.65 0.66
FF 024 320 3.161.12 0.15 0.24
TA FR 0.19 275 272093 020 0.25
LFRO0.10 545 5.390.10 0.64 0.65
FF 0.00 3.58 3.580.00 0.00 0.00
Best:TAFR 0.00 2.64 2.640.00 0.00 0.00
LFR0.00 5.05 5.050.00 0.00 0.00

Table 16: Covert Channel Results for esterel4l — 2x
Sapphire Rapids — Fixed Frequency, No Prefetcher

Model p C T op oC oT
Primitive (%) (Mbit/s) (Mbit/s) (%) (Mbit/s) (Mbit/s)
FF 26.67 132 0.652395 0.29 0.70
TU FR 30.89 147 0.5120.59 039 0.63
LFR 0.19 254 249 0.08 0.81 0.80
FF 553 132 1.051022 0.30 0.47
TA FR 2334 150 0.702142 0.39 0.73
LFR 0.18 2.56 251 0.08 0.84 0.83
Table 14: Covert Channel Results for EMR — 1x Emerald FF 000 1.28 128 000 0.00 0.00
Rapids — Fixed Frequency, No Prefetcher BestTAFR 0.00 2.40 240 0.00 0.00 0.00
Model » C T op oC oT LFR 0.05 1.67 1.66 0.00 0.00 0.00

Primitive (%) (Mbit/s) (Mbit/s) (%) (Mbit/s) (Mbit/s)

FF 0.06 2.07 2.06 059 0.07 0.08

TU FR 5547 1.68 —— 954 0.10 -

LFR 0.19 3.28 3.22 0.08 0.19 0.20

FF 0.64 207 199 1.79 0.07 0.21

TA FR 3497 174 0422197 0.09 0.51

LFR 0.19 324 3.18 0.13 0.18 0.19

FF0.05 2,05 202 000 0.00 0.00 Table 17: Covert Channel Results for musa — 2x Zen 4
BestTAFR 0.00 220 220 0.00 0.00 0.00 (Genoa) — Fixed Frequency, No Prefetcher

LFR 0.10 3.20 3.16 0.00 0.00 0.00 Model

p C T op oC oT
Primitive (%) (Mbit/s) (Mbit/s) (%) (Mbit/s) (Mbit/s)
FF 43.67 1.13 0.03 7.09 0.29 0.05
TU FR 36.85 1.11 0.1315.84 0.28 0.17
LFR 0.20 2.13 2.08 0.08 0.65 0.65
FF 4084 1.14 0.05 6.88 0.29 0.07
TA FR 2346 1.13 04014.87 0.28 0.50
LFR 0.19 2.13 2.09 0.15 0.66 0.66
FF 4233 1.88 0.03 0.00 0.00 0.00
Best-TAFR 0.00 1.88 1.88 0.00 0.00 0.00
LFR 0.00 292 292 0.00 0.00 0.00

Table 15: Covert Channel Results for Zen5 — 1X Zen 5
(Granite Ridge) — Fixed Frequency, No Prefetcher

Model p C T op oC ol
Primitive (%) (Mbit/s) (Mbit/s) (%) (Mbit/s) (Mbit/s)
FF 2458 222 046519 0.03 0.17
TU FR 056 230 223224 0.02 024
LFR 0.04 489 4.870.02 0.10 0.11
FF 19.73 221 0.64271 0.05 0.16
TA FR 1.12 229 213204 0.02 0.26
LFR 0.05 489 4860.15 0.09 0.10
FF 0.67 2.07 1950.00 0.00 0.00
Best:TAFR 0.00 227 2270.00 0.00 0.00
LFR 0.00 498 4.980.00 0.00 0.00

18

	Introduction
	Background and Related Work
	Modern System Memory Hierarchy
	Cache Hierarchy and Structure
	Cache Coherence
	Multi-socket Systems and Numa

	Micro-architectural Attacks
	clflush-based Attacks
	Calibration of Timing Attacks

	Methodology
	Attack Primitives
	Attacker Models
	Experiment 1: Calibration
	Experiment 2: Covert Channel Benchmark
	Experimental Setup

	Results for Experiment 1: Calibration
	Calibration of Intel Client CPUs
	Calibration of Intel Server CPUs
	Calibration of AMD CPUs
	Are Numa Systems Symmetric?
	Calibration of Two-socket Intel Systems
	Calibration of Two-socket AMD Systems
	Calibration of a Four-socket Intel System

	Results for Experiment 2: Covert Channel
	Discussion
	Limitations
	Related Work
	Future Work

	Conclusion and Further Work
	Artifact
	List of All Machines
	Detailed Results
	Additional Results
	Single-socket Zen 2 (Matisse)
	Covert Channel Results

